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Abstract—The shallow ocean is a dynamic environment requir-
ing an adaptive processor. Parametrically adaptive processing
implies embedding a parametric process model enabling a joint
sequential processor capable of tracking oceanic variations. Here
we address the problem of estimating or tracking modal functions
in the ocean while jointly adjusting (adaptively) the inher-
ent normal-mode propagation model parameters (wavenumbers)
based on the data available from the Hudson Canyon experiment.

Index Terms—adaptive model-based processor, sequential
Bayesian processor, sequential Monte Carlo, particle filter, un-
scented Kalman filter

I. INTRODUCTION

The shallow ocean is an ever-changing dynamic environ-
ment requiring a processor able to adapt to changes in a
consistent manner. Parametrically adaptive processing implies
embedding a process model coupled to a parametric evolution
model enabling a joint processor that can be achieved using a
recursively or equivalently sequentially. Sequential processing
enables the realization of such a processor in order to account
for changes especially in a shallow ocean environment. The
processor tracks these variations by adjusting the embedded
parameters that are capable of capturing the environmental
changes (nonstationary spatial/temporal variations).

The shallow ocean is a particularly challenging signal pro-
cessing environment primarily because of its inherent dynam-
ics created by temperature variations in the upper layers and
both internal and external disturbances that directly alter the
sound propagation throughout. Temperature variations directly
impact sound speed due their strong interrelationship, while
internal disturbances can be related to fish sounds (snapping
shrimp, mammal communications). External disturbances are
directly related to wind induced wave motion, shipping noise
and other surface related noises. In all, the shallow ocean is
quite a hostile environment to attempt to extract meaningful
information from directly without sophisticated processing
techniques.

Bayesian sequential processing incorporating propagation
models along with their inherent environmental parameters
as well as measurement and noise models offers a robust,
parametrically adaptive solution to signal processing problems
in this nonstationary environment. Sequential Bayesian tech-
niques enable a class of processors capable of performing in
an uncertain, nonstationary (varying statistics), non-Gaussian,
variable shallow ocean environment. Here we address the

problem of estimating or tracking modal functions in a hostile
shallow ocean while jointly adjusting (adaptively) the inherent
normal-mode propagation model parameters (wavenumbers).

Previous work on this problem has investigated adaptive
solutions under Gaussian assumptions using approximate non-
linear processors such as extended Kalman filters with some
success; however, here we attack the problem with the se-
quential Bayesian construct enabling the joint modal function
and wavenumber estimation to proceed without any limiting
statistical assumptions. It has already been shown that this
parametrically adaptive approach can operate successfully in
this environment [25], [26] when estimating modal coeffi-
cients; however, here we construct processors (as before [27])
to adapt to the horizontal wavenumber—a more environmen-
tally sensitive parameter.

We begin by briefly reviewing the formulation of the prob-
lem in a state-space framework and developing the necessary
mathematics for processor design (more details can be found
in [27]. After proceeding through the design using simulated
data, we apply the adaptive processor to the Hudson Canyon
experimental data. The performance of the Bayesian processor
is analyzed indicating its capability to track both modes and
wavenumber simultaneously while jointly enhancing the raw
hydrophone measurements.

The basic approach we employ to solve this problem is
Bayesian model-based. Incorporating a propagation model into
a signal processing scheme has evolved over a long period of
time where it was recognized that by embedding a physics-
based representation can significantly improve the processing
[1]-[5]. In ocean acoustics there are many problems of interest
[6]-[14] governed by propagation models of varying degrees
of sophistication.

In this paper, we are primarily interested in investigating
the performance of the unscented Kalman filter (UKF) and
the particle filter (PF) with the objective of analyzing their
performance on pressure-field data from the well-known Hud-
son Canyon experiments performed on the New Jersey shelf
[11], [12]. The PF is a sequential Markov chain Monte Carlo
(MCMC) Bayesian processor capable of providing reasonable
performance for a multi-modal problem estimating a non-
parametric representation of the posterior distribution [24].
The UKF is a unimodal processor capable of representing any
single peaked distribution using a statistical linearization tech-
nique based on sigma points that deterministically characterize
the posterior [24]. Here we compare their performance on the



raw Hudson Canyon data.
The state-space representation of our problem is briefly

presented in Section II leading to the formulation of the
forward propagator. The particular algorithms employed were
discussed previously [27]. The design of the Bayesian proces-
sor for this shallow oceanic problem is discussed in Section
III and the results are given in Sec. IV.

II. STATE-SPACE PROPAGATOR

For our ocean acoustic signal enhancement problem we
assume a horizontally-stratified ocean of depth ℎ with a
known horizontal source range 𝑟𝑠 and depth 𝑧𝑠 and that the
acoustic energy from a point source can be modeled as a
trapped wave governed by the Helmholtz equation [9], [13].
The standard separation of variables technique and removing
the time dependence leads to a set of ordinary differential
equations, that is, we obtain a “depth only” representation of
the wave equation which is an eigenvalue equation in 𝑧 with

𝑑2

𝑑𝑧2
𝜙𝑚(𝑧) + 𝜅2

𝑧(𝑚)𝜙𝑚(𝑧) = 0, 𝑚 = 1, ⋅ ⋅ ⋅ ,𝑀 (1)

whose eigensolutions {𝜙𝑚(𝑧)} are the so called modal func-
tions and 𝜅𝑧 is the wavenumber in the z-direction. These
solutions depend on the sound speed profile, 𝑐(𝑧), and the
boundary conditions at the surface and bottom as well as the
corresponding dispersion relation given by

𝜅2 =
𝜔2

𝑐2(𝑧)
= 𝜅2

𝑟(𝑚) + 𝜅2
𝑧(𝑚), 𝑚 = 1, . . . ,𝑀 (2)

where 𝜅𝑟(𝑚) is the horizontal wavenumber associated with the
𝑚-th mode in the 𝑟 direction and 𝜔 is the harmonic source
frequency.

By assuming a known horizontal source range a priori,
we obtain a range solution given by the Hankel function,
𝐻0(𝜅𝑟𝑟𝑠) enabling the pressure-field to be represented by

𝑝(𝑟𝑠, 𝑧) =

𝑀∑
𝑚=1

𝛽𝑚(𝑟𝑠, 𝑧𝑠)𝜙𝑚(𝑧) (3)

where 𝑝 is the acoustic pressure; 𝜙𝑚 is the 𝑚𝑡ℎ modal function
with the modal coefficient defined by

𝛽𝑚(𝑟𝑠, 𝑧𝑠) := 𝑞 𝐻0(𝜅𝑟𝑟𝑠) 𝜙𝑚(𝑧𝑠) (4)

for 𝑞 is the source amplitude and 𝐻0 is the zero-th Hankel
function at horizontal wavenumber and source range 𝑟𝑠.

The depth-only eigen-equation can easily be transformed
to state-space form by defining the state vector of the 𝑚-th
mode as 𝜙𝑚(𝑧) = [𝜙𝑚(𝑧) 𝑑

𝑑𝑧𝜙𝑚(𝑧)] := [𝜙𝑚1(𝑧) 𝜙𝑚2(𝑧)]
𝑇 .

Assuming that the ocean acoustic noise can be character-
ized by additive uncertainties, we can extend the deter-
ministic state equation for the 𝑀 -modes, that is, Φ(𝑧) :=
[𝜙1(𝑧)∣ ⋅ ⋅ ⋅ ∣𝜙𝑀 (𝑧)]𝑇 leading to the following 2𝑀 -dimensional
Gauss-Markov representation of the model:

𝑑

𝑑𝑧
𝜙(𝑧) = A(𝑧)𝜙(𝑧) +w(𝑧) (5)

where A := diag[A1 ⋅ ⋅ ⋅ A𝑀 ] and w(𝑧) =
[𝑤1 𝑤2 . . . 𝑤2𝑀 ]𝑇 is additive, zero-mean random noise.
The overall state vector is

𝜙(𝑧) = [𝜙11 𝜙12 ∣ 𝜙21 𝜙22 ∣ . . . ∣ 𝜙𝑀1 𝜙𝑀2]
𝑇 (6)

This representation leads to the 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 equations that
we can write as

𝑝(𝑟𝑠, 𝑧) = C𝑇 (𝑟𝑠, 𝑧𝑠)𝜙(𝑧) + 𝑣(𝑧) (7)

where

C𝑇 (𝑟𝑠, 𝑧𝑠) = [𝛽1(𝑟𝑠, 𝑧𝑠) 0 ∣ ⋅ ⋅ ⋅ ∣ 𝛽𝑀 (𝑟𝑠, 𝑧𝑠) 0] (8)

The random noise terms w(𝑧) and 𝑣(𝑧) can be assumed
Gaussian and zero-mean with respective covariance matrices,
R𝑤𝑤 and R𝑣𝑣. The measurement noise (𝑣(𝑧)) can be used
to represent the “lumped” effects of near-field acoustic noise
field, flow noise on the hydrophone and electronic noise. The
modal noise (w(𝑧)) can be used to represent the “lumped”
uncertainty of sound speed errors, distant shipping noise,
errors in the boundary conditions, sea state effects and ocean
inhomogeneities that propagate through the ocean acoustic
system dynamics (normal-mode model). These assumptions,
with known model parameters lead to the optimal solution of
the state estimation problem [18].

Since our array spatially samples the pressure-field dis-
cretizing depth, we choose to discretize the differential state
equations using a central difference approach for improved
numerical stability [27] which leads to the following set of
difference equations for the 𝑚-th mode for △𝑧ℓ := 𝑧ℓ − 𝑧ℓ−1

𝜙𝑚1(𝑧ℓ) = 𝜙𝑚2(𝑧ℓ−1)

𝜙𝑚2(𝑧ℓ) = −𝜙𝑚1(𝑧ℓ−1) +
(
2−△𝑧2ℓ𝜅

2
𝑧(𝑚)

)
𝜙𝑚2(𝑧ℓ−1)

(9)

with each of the corresponding modal 𝐴-submatrices given by

A𝑚(𝑧) =

⎡
⎣

0 1

−1 2−△𝑧2ℓ𝜅
2
𝑧(𝑚)

⎤
⎦ ; 𝑚 = 1, ⋅ ⋅ ⋅ ,𝑀 (10)

The “parametrically adaptive” processor evolves from this
representation by defining a parameter set of the horizontal
wavenumbers to vary as before [27]. We define the param-
eter vector as 𝜃𝑚(𝑧) := 𝜅𝑟(𝑚); 𝑚 = 1, ⋅ ⋅ ⋅ ,𝑀 and a
new “augmented” state vector as Φ𝑚(𝑧ℓ; 𝜃𝑚) := Φ𝑚(𝑧ℓ) =
[𝜙𝑚1(𝑧ℓ) 𝜙𝑚2(𝑧ℓ) ∣ 𝜃𝑚(𝑧ℓ)]

𝑇 .
With this choice of parameters (horizontal wavenumber) the

augmented state equations for the 𝑚-th mode become



𝜙𝑚1(𝑧ℓ) = 𝜙𝑚2(𝑧ℓ−1) + 𝑤𝑚1(𝑧ℓ−1)

𝜙𝑚2(𝑧ℓ) = −𝜙𝑚1(𝑧ℓ−1) +
(
2−△𝑧2ℓ

( 𝜔2

𝑐2(𝑧ℓ)
− 𝜃2𝑚(𝑧ℓ−1)

))

× 𝜙𝑚2(𝑧ℓ−1) + 𝑤𝑚2(𝑧ℓ−1)

𝜃𝑚(𝑧ℓ) = 𝜃𝑚(𝑧ℓ−1) + 𝑤𝜃𝑚(𝑧ℓ−1)

(11)

where we have selected a random walk model
(
𝜃𝑚(𝑧) =

𝑤𝜃𝑚(𝑧)
)

to capture the variations of the horizontal wavenum-
ber with additive, zero-mean, Gaussian noise of covariance
𝑅𝑤𝜃𝑚𝑤𝜃𝑚

. The random walk model can provide constraints
in the simulation,since the parameters are modeled as multi-
variate Gauss-Markov. The corresponding measurement model
is given by

𝑝(𝑟𝑠, 𝑧ℓ) =

𝑀∑
𝑚=1

𝛽𝑚

(
𝑟𝑠, 𝑧𝑠; 𝜃𝑚(𝑧ℓ)

)
𝜙𝑚(𝑧ℓ)+𝑣(𝑧ℓ); ℓ = 1, ⋅ ⋅ ⋅ , 𝐿

(12)
with

𝛽𝑚(𝑟𝑠, 𝑧𝑠) := 𝑞 𝐻0(𝜃𝑚(𝑧ℓ)𝑟𝑠) 𝜙𝑚(𝑧𝑠) (13)

This completes the development of the discrete state-space
representation of the shallow ocean acoustic (normal-mode)
propagation model that is embedded as a “forward propagator”
into the subsequent processors for signal enhancement.

III. MODEL-BASED OCEANIC SIGNAL
PROCESSING

In this section we discuss the development of the propagator
for the Hudson Canyon experiment performed in 1988 in
the Atlantic with the primary goal of investigating acoustic
propagation (transmission and attenuation) using continuous
wave data [11], [12].

In order to construct the state-space propagator, we require
the set of parameters which were obtained from the experi-
mental measurements and processing (wavenumber spectra).
The raw measured data was processed (sampled, corrected,
filtered, etc.) and supplied for this investigation.

The design and development of the environmentally adap-
tive PF proceeds through the following steps: (1) pre-
processing the raw experimental data; (2) solving the boundary
value problem [9] to obtain initial parameter sets for each tem-
poral frequency (e.g. wavenumbers, modal coefficients, initial
conditions, etc.); (3) state-space forward propagator simulation
of synthetic data for PF analysis/design; (4) application to
measured Hudson Canyon data; and (5) PF performance
analysis.

Pre-processing of the measured pressure-field data follows
the usual pattern of filtering, outlier removal and Fourier trans-
forming to obtain the complex pressure-field as a function of
depth along the array. This data along with experimental condi-
tions (frequencies, sound-speed profiles (CTD measurements),
boundary conditions, horizontal wavenumber estimators (see

[12] for details) provide the input to the normal mode BVP
solutions (SNAP [6], KRACKEN [7], etc.) yielding the output
parameters. These parameters are then used as input to the
state-space forward propagator [27].

The state-space propagator is then used to develop a set of
synthetic pressure-field data with higher resolution than the
original raw data, that is, a 46-element array at half-wave
inter-element spacing rather than the 23-element array used
in the experiment. This set represents the “truth” data that
can be investigated when “tuning” the PF (e.g. number of
particles, covariances, etc.). Once tuned, the processors are
applied directly to the measured Hudson Canyon pressure-field
data (23-elements) after re-adjusting some of the processor
parameters (covariances). Here the metrics are estimated and
processor performance analyzed. Since each run of the PF
is a random realization, that is, the process noise inputs are
random, an ensemble of results are estimated with ensemble
statistics presented. In this way, we can achieve a detailed
analysis of the processor performance prior to fielding and
operational version. In this paper we constrain our discussion
results to processing Hudson Canyon pressure-field measure-
ments using a 23-element array.

IV. RESULTS

First we investigate the enhancement capabilities of the
PF in estimating the pressure-field over a 100-member en-
semble shown in Fig. 1. Using 1500-particles, we see the
raw hydrophone data (dashed blue line) from the experi-
ment as well as both maximum a-posteriori (MAP) estimates
(red circles) and conditional mean (CM) estimates (dotted
magenta line with circles). Both estimators appear to track
the field quite well (true (mean) solution in green dashes).
The corresponding innovations (residual) sequence is also
shown (black). Classically, both estimators produced satisfac-
tory zero-mean/statistical whiteness tests as well as the WSSR
tests indicating a “tuned” processor [18].

Ensemble mode tracking results are shown in Figs. 2 and 3
for each of the modal function estimators, the PF (MAP/CM)
and the UKF. In Fig. 2 we observe that the performance of
the PF (MAP/CM) appears to track the modes quite well and
better than the UKF. The PF estimators perform equivalently.
Two of the modal function estimates (first two) exhibit the
largest errors while the final three functional estimates are
much better. The root-mean-squared (modal tracking) error
for each mode is quite reasonable on the order of 10−5

again confirming their performance. It is interesting to note
that the wavenumber estimates are constantly being adapted
(adjusted) by the processor throughout the runs attesting to
the nonstationary nature of the ocean statistics. The ensemble
average wavenumber estimates are very reasonable: (0.206,
0.197, 0.181, 0.173, 0.142; (TRUE) 0.208, 0.199, 0.183, 0.175,
0.142. The PF and CM ensemble estimates are very close to
the true values adapting to the changing ocean environment yet
still preserving wavenumber values on the average. On a single
realization, all three of three of the processors were capable



Fig. 1. Raw pressure-field data/enhanced data (blue dots) from the Hudson
Canyon experiment with a 23-element hydrophone vertical array using particle
filter estimators: MAP (red), conditional mean (CM) in magenta and the
corresponding innovations (residuals) sequence (black diamonds).

Fig. 2. Modal function tracking (estimation): Hudson Canyon data of a 23-
element array (blue plus), UKF (turquoise dots), MAP (red circles) and CM
(magenta squares) particle filters.

of predicting the correct values, but the ensemble results give
a better overall performance metric.

We also illustrate the multimodal aspect of the oceanic data
by observing the modal function posterior probability PDF
estimates for mode 5 illustrated in Fig. 4. It is clear from the
plots that for each depth multiple peaks appear in the posterior
estimates. The wavenumber PDF estimate corresponding to
corresponding to mode 5 is shown in Fig. 5. Again we note
the multiple, well-defined peaks in the posterior distribution
leading to the MAP parameter estimate.

The pressure-field posterior peaks over the span of the
water column. Visualizing a peak at each depth produces a
“smooth” estimate (MAP) as shown in Fig. 6. This completes
the analysis of the synthesized Hudson Canyon experiment

Fig. 3. Adaptive wavenumber parameter estimates from the Hudson Canyon
23-element array data using the MAP (red) particle filter.

Fig. 4. PMF posterior estimation (mode 5) surface for Hudson Canyon
23-element array data (particle vs. time vs. probability).

and the PF processing performance.

V. SUMMARY

This paper has discussed the development of an environ-
mentally adaptive processor capable of tracking modes and
enhancing the raw pressure-field measurements obtained from
a vertical hydrophone array in shallow water. The parametric
adaption was based on simultaneously estimating the horizon-
tal wavenumbers along with the modes and pressure-field as
compared to previous work that concentrated on estimating the
modal coefficients as the environmental parameters of interest
[25], [26], [27]. These parameters were more challenging
from a processor design perspective because of their increased
sensitivity to environmental change compared to the modal
coefficients. We chose a Bayesian sequential design because of
the varying nature of the shallow ocean and applied a normal-
mode model in state-space form to create a forward propagator.
The algorithms applied were the unscented Kalman filter and
the particle filter both modern approaches applied to this
problem. We compared their performance and found slightly
better results of the PF over a 100-member ensemble. Our



Fig. 5. PMF posterior estimation (wavenumber 5) surface for Hudson Canyon
23-element array data (particle vs. time vs. probability).

Fig. 6. Pressure-field posterior PMF estimation surface for Hudson Canyon
data (particle vs. time vs. probability).

future efforts will be focused on extending the processors to
actual measurement data.
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